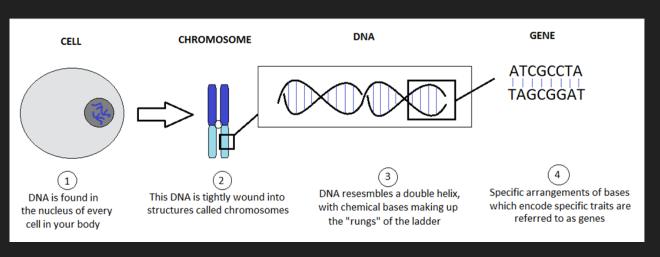
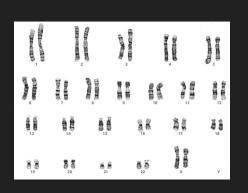
Genetics and Health

~ SCIENCE 24 ~

Inherited Characteristics


Have you ever been told that you look like your mom or dad? This is the result of inherited characteristics.

- ➤ Genetics is the study of how heritable traits are passed down from parents to offspring
- ➤ You receive 50% of your DNA from your mom, and 50% from your dad


Genes, DNA & Chromosomes

The genes you inherit from your parents are simply different arrangements of DNA, which encode specific traits:

Chromosomes & Sex Determination

Every cell in the human body contains 23 pairs of chromosome (or 46 in total):

- ➤ One of these pairs is the sex chromosomes; they determine sex
- ➤ Females hav**two** identical "X" chromosomes, while males hence "X" and one "Y"
- ➤ The chromosome map to the left is a karyotype organize targest to smallest

DNA Replication

When your cells divide, the DNA in their nucleus must be replicated so the new cell contains the exact same genetic information.

- When DNA replicates, it opens up like the zipper of a coat
- ➤ Free floating compounds called "base within the nucleus then match up with the original strand to make an exact copy
- Adenine (A) always pairs with Thymine (T), and Cytosine (C) always pairs with Guanine (G)

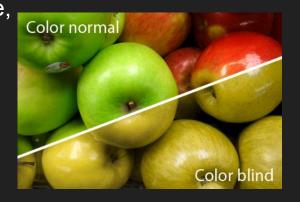
DNA Replication & Mutation

The process of DNA replication is not a perfect one; mistakes are oft made, resulting in changes to genes and the way genes are express

- ➤ These changes are calledtations
- Mutations are not always "bad"; they often just result in variations of particular traits (e.g. blue eyes instead of brown)
- Mutation occurs naturally, but it can also be caused by exposure to dangerous substances, calletagens
- Examples of mutagens include cigarettes, exposure to UV radiation, alcohol & other drugs

Acquired Genetic Disorders

Some diseases can be acquired, or developed, throughout an individual's lifespan as a result of exposumeultagens


- ➤ Overexposure to the sun or UV rays from tanning beds, for example, can lead to skin cancer
- ➤ UV rays can alter gene expression, causing cells to divide uncontrollably

Heritable Genetic Disorders

If mutations occur in the <u>sametesof</u> an individual (e.g. during the formation of sperm or eggs), their offspring may inherit these discenseing genes

- ➤ Colour blindness, for example, is caused by a mutation to the gene that encodes specific receptors in the eyes
- ➤ An individual who is colour blind may pass down this gene to their offspring

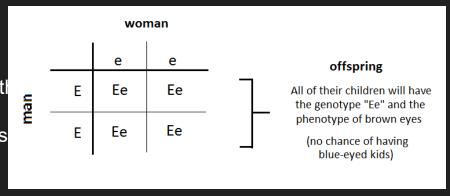
Patterns of Inheritance

Each of our genes has at least two possible variations; for example, to for eye colour may encode blue eyes or brown eyes. Each variation, must therefore be eitheliominantor recessive

- Because chromosomes come in pairs (one from each parent), we have two copies (alleles) of each gene
- However, because we receive one allele from each parent, both of our alleles for a given gene do not hav to be exactly the same
- ➤ So how do you know which variation will be expressed

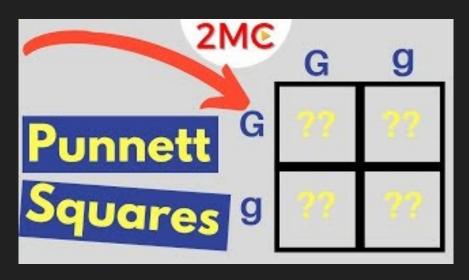
Dominant Vs. Recessive Gene

Dominant variations of genes, or dominallet/eş will always be expressed ove recessive variations of genes, or recessives Capital and lowercase letters are used to represent whether an allele is dominant or recessive:


- ➤ E.g. the allele for brown eyes (E) is dominant over the allele for blue eyes
- ➤ So, a person with one dominant allele and one recessive allele (e) will alway have brown eyes
- ➤ A person with two dominant alleles (EE) will always have brown eyes
- ➤ A person must have two recessive alleles (ee) to have blue eyes

Punnett Squares

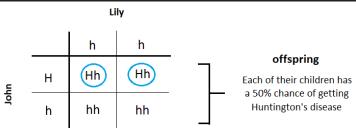
If we know the enotype (combination of dominant & recessive alleles) of two people for a particular trait, we can determine their probability of having a chieach corresponding henotype (observable characteristics) using a Punnett Square for the second se


EXAMPLE:

A browneyed man with the genotype EE ("homozygous dominant") has children with blue-eyed woman with the genotype ee ("homozygous recessive"). What is their chance of having a blue ed child?

Punnett Squares

If we know the enotype (combination of dominant & recessive alleles) of two people for a particular trait, we can determine their probability of having a chieach corresponding henotype (observable characteristics) using a Punnett Square for the second stress of the second se


Genetic Counselling

An<u>amniocentes</u>isan be used to test a baby's genotype. A genetic counsellor also use Punnett Squares to predict whether the offspring of two individuals inherit a particular genetic disorder:

EXAMPLE:

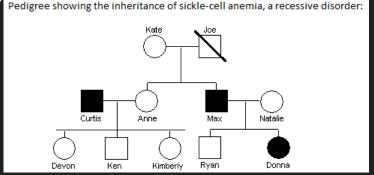
Huntington's disease is a dominant genetic

disorder resulting in the degeneration of motor and cognitive abilities over time. John was diagnosed with Huntington's las year; with genetic testing, his genotype was determined to be Hh (heterozygous). John's wife, Lily, does not have Huntington's, so her genotype must be hh What is their probability of having a child with Huntington's?

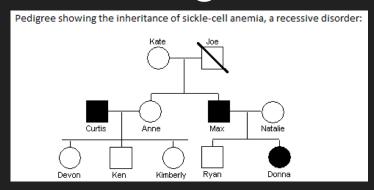
Pedigrees

A pedigree or "family tree" can be developed to represent the passing on of particular traits throughout each generation.

➤ Females are represented using circles, males are represented using


using squares

Affected individuals are shaded in


Deceased individuals are crossed off

Successive generations are joined by vertical lines

> Horizontal lines show mating

Pedigrees

- > Who are the children of Kate and John and Max
- ➤ Who is Max married to Matalie
- ➤ Who is Ken's sister Kimberly
- > Who in the family has sickell anemia? Curtis, Max and Donna
- What must be the genotype of Curtis, Max, and Domaa?
- ➤ What could Anne's genotype be?
 AA or Aa

The Human Genome Project

In 1990, scientists began mapping the human genome. They hoped that by ider all of the genes that make up the human genome, they would gain a better understanding of what makes us so unique; they also hoped it would allow the prevent, treat, and/or cure a number of diseases. By 2003, the project was common They found that...

➤ The human genome consists of approximately 20,500 different genes (about the same number as a field mou

Most of these genes do not appear to have any specific purpose (once called "junk" DNA)

Epigenetics: Decoding the Genom

Although the completion of the Human Genome Project was a huge accomplishment in the fie genetics, it left many questions unanswered. Why are there so many seemingly useless gene seemed as though the genetic code alone was not 100% responsible for making us who we

- Epigeneticsefers to how your behaviour and environment can affect how your genes are expressed
- Diet, exercise, the consumption of drugs & alcohol, and even mental health can attribute to the "flipping" of these switches

U

E.g. women who experience anxiety during pregnancy and likely to have children who are anxious as a result of epigore.

likely to have children who are anxious as a result of epige Examples include thalidomide "flipper babies",

fetal alcohol syndrome, and the effects of taking testosterone or estrogen

Epigenetics: An Indigenous Perspective

INDIGENOUS ELDERS OFTEN SAY THAT MEMORY IS IN THE BLOOD AND BONE, THAT OUR STORIES ARE PASSED NOT JUST VERBALLY BUT THROUGH A KIND OF GENETIC MEMORY

- ➤ Indigenous ways of knowing hold their conceptions that provide a mirror to our Western perspectives. One example is the Anishinaabe creation story referencing the 'stringing together of the seeds of life' that speaks to the genetic code
- ➤ The Indigenous concept of blood memory, that we carry the wisdom of our ancestors in our blood. This ties to the epigenetics we just discussed.

Genetic Engineering

Our growing knowledge of genes and gene expression has resulted in leaps innovation in the fields of medicine and agriculture throughtic engineering

- Genetic engineering is the process of taking a gene from one spe and inserting it into the DNA of another. This may cause the orga to produce more or less of a particular gene, or express an entire trait altogether.
- Genetic engineering has allowed us to grow crops in regions they wouldn't normally be able to grow; it also allows us to grow bigger healthier, more nutritious crops
- Genetic engineering has allowed us to produce large amounts of insulin for people with diabetes; it is also the basis of many other medical breakthroughs in terms of disease treatment and prevent

Ethical Concerns

Although an understanding of the human genome and the ability to alter it to improve our own health through genetic engineering has endless benefits, there a number of ethical concerns associated with such technologies...

- Who should be allowed to have access to our genetic information? Should a person be allowed to make decisions about another person based on their genetic information?
- Do companies have the right to patent genes
- Should parents be able to genetically select t characteristics of their offspring?
- ➤ Is it ethical tœlonehumans?
- ➤ If you had a fatal genetic disorder, would you want to know?

Ethical Concerns

