Subatomic Particles

Lesson 10

Objectives

- describe the modern model of the proton and neutron as being composed of quarks.
- compare and contrast the up quark, the down quark, the electron and the electron neutrino, and their antiparticles, in terms of charge and energy (mass-energy).

 describe beta-positive (β+) and betanegative (β-) decay, using first-generation elementary fermions and the principle of charge conservation.

Standard Model

- We know now that there are more than just protons, neutrons, and electrons that make up the atom.
- In all, more than 300 sub atomic particles have been discovered.
- To make sense of all of these particles, physicists form groups

Classes of Particles

Descriptions of Particles

• Elementary Particles:

- particles with no internal structure (ie: are not composed of other particles)
- Classified according to their spin
 - Fermions have half-integer spin (1/2)
 - Bosons have integer spin (1)
- Composite Particles:
 - are composed of other particles (can be broken down further)

Elementary Particles: Bosons

These particles are said to mediate the fundamental forces of nature

Name	Symbol	Antiparticle	Charge	Spin	Mass	Interaction	Existence
			(e)		(GeV/c ²)	mediated	
Photon	γ	Self	0	1	0	Electromagnetism	Confirmed
W	\mathbb{W}^{-}	W^+	- 1	1	80.4	Weak interaction	Confirmed
boson							
Zboson	Z	Self	0	1	91.2	Weak interaction	Confirmed
Gluon	σa	Self	0	1	0	Strong interaction	Confirmed
Higgs	Η-	Self?	0	0	> 112	None	Unconfirmed
boson							
Graviton	G	Self	0	2	0	Gravitation	Unconfirmed

Elementary Particles: Fermions

- These are the smallest known particles
- They make up all other types of matter
- There are 2 different types:
 - Quarks (6 types)
 - Leptons (6 types)

Matter								
Generation	First		Sec	ond	Third			
Quarks	up	down	strange	charm	bottom	top		
Leptons	electron	electron-neutrino	muon	muon-neutrino	tau	tau-neutrino		
Fundamental Forces								
Force	Electromagnetic		Weak	Nuclear	Strong Nuclear			
Mediating particle(s)	DBOIOD		W+, W-	, and Z ^o	gluon			

Quarks

- Quarks are involved in strong nuclear forces because quarks make up the particles of the nucleus (protons and neutrons).
- In order to obey the Law of Conservation of Charge in nuclear reactions, many of quarks have fractional charges:

Quarks

▼ Table 17.5 Some Properties of Quarks

Generation	Name	Symbol	Mass (MeV/c²)	Charge
First	up	U	1.5-4 [*]	$+\frac{2}{3}e$
	down	d	4-8	$-\frac{1}{3}e$
Second	strange	s	80-130	$-\frac{1}{3}e$
	charm	с	1.15-1.35 × 10 ³	$+\frac{2}{3}e$
Third	bottom (or beauty)	b	$4.1-4.9 \times 10^{3}$	$-\frac{1}{3}e$
	top (or truth)	t	1.7-1.9 × 10 ⁴	$+\frac{2}{3}e$

*Some physicists think the up quark may be essentially massless.

Leptons

- The particles outside the nucleus (ie: electron and electron neutrino) are called leptons
- These are much smaller than nucleons
- Together, protons, neutrons and electrons, and electron neutrinos are first generation fermions.
- Other examples of leptons are the muon (µ) and the tauon (□) particles (as well as their neutrinos)

Quick Review

- All matter is made up of the 6 quarks and 6 leptons.
- Protons and neutrons are made up of quarks
- Electrons and neutrinos are leptons

Composite Particles: Hadrons

- These are particles that interact (display their properties) via forces, most notably the strong nuclear force.
- These particles are made up of smaller particles called quarks and/or antiquarks.
 - Ex: neutrons, protons
- There are 2 types:
 - Baryons (composite fermions)
 - Mesons (composite bosons)

Hadrons: Mesons

- Ordinary mesons are made up of one quark and one anti-quark
- They are classified as composite bosons because they have the same spin (integer spin) but they are not elementary particles
- Some examples include pions (π⁺) and kaons (κ⁺)

Hadrons: Baryons

- Baryons are composed of either three quarks or three antiquarks
- They are classified as composite fermions because they are involved in the strong forces of the nucleus.
- The most widely known baryons are the proton and the neutron
- Recall that quarks must have fractional charges in order to make the correct proton and neutron charges

Protons

 made up of two up quarks and one down quark (uud):

Net charge = +1 e

Neutrons

made up of two down quarks and one up quark (udd):

Net charge = neutral

Beta Decay: Revisited

• These quarks can also explain the reaction seen during a beta decay:

 In beta-negative decay, one neutron turns into a proton and an electron and an anti-neutrino:

Beta Decay: Revisited

If we now include the symbols for quarks as protons/neutrons:

 In this more complete eqn. for beta-negative decay, a W-boson is produced (the mediator for the weak nuclear decay force), which decays itself into the beta particle and antineutrino.

Beta Positive Decay

 Beta-positive decay can be described through a similar process:

Note: Antimatter

- Each particle of matter has an antiparticle.
- As we have seen, electrons have an antiparticle, the positron.
- Protons also have an antiparticle, the antiproton (scientists have used this particle to produce antihydrogen!)
- The latest research is discovering why there is a discrepancy in the amount of matter vs. antimatter in the universe