Chapter 3: Types of Chemical Reactions

What We Know

- Chemical reactions can be simple or complex
- Chemical changes can be obvious or subtle
- They can be immediate or gradual

Word Equations

- Used to describe many different types of chemical reactions
- Indicates the change from reactants to products
- Some rules:
- The <u>left</u> side lists all the <u>reactants</u>
- The <u>right</u> side lists the <u>products</u>
- An <u>arrow</u> is between the reactant and products. It shows that something is produced during the reaction

Word Equations

- All reactants \rightarrow all products
- If there is multiple reactants or products they are separated by a plus sign (+)

Photosynthesis

Molecular Equation

Word Equation

- Carbon dioxide and water use sunlight to produce sugar/glucose and oxygen gas
- The reaction is endothermic

Other Example

- ➤ Zinc + hydrochloric acid → zinc chloride + hydrogen gas + energy
- Word Equation
- Zinc and hydrochloric acid produce zinc chloride, hydrogen gas, and energy
- Exothermic!

Zinc and Hydrochloric Acid

Types of Reactions

- There are patterns that certain elements and compounds will follow and many chemists will see this as bakers do with recipes
- These groupings allow chemists to predict the product of an unknown reaction.
- It also helps them understand the behaviors of substances in a chemical reaction.

Terminology

Element – individual entity from periodic table

- Hydrogen (H₂), Iron (Fe), Oxygen (O₂)
- Compound group of elements together Water (H₂O), Carbon dioxide (CO₂)

Simple Composition Reactions

- 2 or more elements react to form a new compound
- Most are <u>exothermic</u>

Product is always a compound

Simple Decomposition Reactions

- Breaks a compound into separate elements
- Reactant is always a compound

Most are endothermic – absorb energy

Combustion

A <u>fuel</u> is burned in the presence of <u>oxygen</u> to produce <u>carbon</u> <u>dioxide</u>, water, and <u>energy</u>

$2C_8H_{18} + 25O_2 \rightarrow 18H_20 + 16CO_2 + energy$

(octane + oxygen \rightarrow water + carbon dioxide + energy)

Used largely in the petroleum industry

Uses for Petroleum

Neutralization

- Looked at yesterday
- Taking an antacid to neutralize stomach acid
- Acid reacts with a base

To be continued...

Chapter 3: Types of Reactions continued

ebaumsworld.com

Formulas for Common Compounds

- Created so scientists of different languages could know what each other were talking about
- Zinc + Sulfur \rightarrow Zinc Sulfide

- When they form a compound the non-metal has the latter part of its name to "-ide"
- Using the chemical name for the products and reactant

Periodic Table

Shows chemical names of each element along with their chemical symbol

Chemical Formula

- ► Zinc + Sulfur → Zinc Sulfide
- $rac{}{}$ Zn + S \rightarrow ZnS
- Name: 1.Metal 2.Non-Metal
- Periodic Table in back of textbook
- Name of non-metal adds "-ide" to name
- Oxygen \rightarrow Oxide, Chlorine \rightarrow Chloride
- Formula will also have the element's state
- (s) = solid, (l) = liquid, (g) = gas, (aq) = aqueous (means dissolved in water)

 $+ 3H_{2(a)}$

 \rightarrow ?NH_{3(a)}

Common Names

- Not everyone is a scientist so certain compounds have been given common names
- You may already know some of these names!
- H₂O?
- NaCl?
- C₆H₁₂O₆?
 NaHCO₃?

g Soda

Chemical Equation

- We've talked about different signs of chemical actions – bubbling, formation of a precipitate, colour change, etc.
- In some reactions substances or matter may seem to be destroyed but it actually doesn't change

Law of Conservation of Mass

- Discovered in the 1700s by Antoine Lavoisier
- "In a chemical reaction matter is neither created or destroyed"
- Reactant 1 (8.5g) + Reactant 2 (1.5g)
- → Product (10g)
- 8.5g + 1.5g → 10g

Video Time!

Staying Balanced

- Sometimes word equations aren't enough
- Metal + tire + glass + others \rightarrow car
- Not very clear on the different amounts

 Subscript # show how many of that atom are in the compound or element, while coefficient # in front shows how many of that entire molecule there is

Chemical Equation

Practice

4 Iron

6 Oxygen

The End