Chapter 14: The Nature of Speed Section 14.4 (pgs. 264 - 265)

Distance Travelled During Reaction Time

<Question> Why are speed limits different for different roads?

- windy or steep roads or type of road - zones of traffic
- weather conditions

- Driver reaction time does NOT really change at different velocities
- Distance travelled during the reaction time DOES change

<u>Example</u>

If Pat has a reaction time of 0.15 minutes, how far does his car go before he even hits the brakes, if he is travelling at:

a)
$$60 \text{ km/h?}$$

$$t = 0.15 \text{ min}$$

$$60 \text{ min}$$

$$= 0.0025 \text{ h}$$

$$V = 60 \text{ km}$$

$$= 150 \text{ m}$$

$$d = Vt$$

$$= 100 \text{ km/h?}$$

$$d = Vt$$

$$= 100 \text{ km/h}$$

$$0.0025 \text{ h} = 0.25 \text{ km}$$

$$= 250 \text{ m}$$

Example (Try This! page 264)

Suppose your reaction time is around 0.25 seconds.

Calculate the number of metres your vehicle travelling at 100 km/h will go in those 0.25 seconds before you even hit the brakes. (1 km = 1000 m, 1 h = 3600 s)

$$t = 0.25s$$
 $d = vt$
 $V = 100 \frac{km}{h} \div 3.6$ $= 27.7 \frac{km}{h} (0.25s)$
 $= 27.7 \frac{km}{h} = 6.925 m$

Braking Distance: the distance that a vehicle travels after the driver applies the brakes

Stopping distance: includes the distance travelled during reaction time PLUS the braking distance.

Reaction Time + Braking Distance ie) Yellow Lights are set to last different lengths of time to compensate for seeing the light, reacting AND stopping before the red light.

Following Distance: distance with which to safely follow another vehicle and stop in time (at that speed).

- No matter how fast your reaction time, vehicles still require a certain time to stop.
- Following too closely is against the law (tailgating).

· Cyll(p265)#1-4
· Do Sec 1-2 of Module Booklet
· Chapter 13+14 Vocab