Physics 20 Unit 2 - Gravity

Field Theory and Universal Gravitation

Contact	Action at a Distance
How can we explain t	hese action at a distance force

Enter: Field Theory

Invisible <u>gravitational fields</u> surround all objects at all times. Every mass in the universe creates its own gravitational field. Field: a sphere of influence surrounding an object

Campfire analogy -

Examples of other fields:

Test Object Formula

 When an object is experiencing a gravitational force because it is trapped in the gravitational field created by a larger mass object, we can use this formula to describe the field / force it experiences:

$$g = \frac{F_g}{m}$$

 The mass in this equation *must* be the test mass (ie: the mass of the object *experiencing* gravity)

We know what direction field lines will move in, now here's how we can work out the magnitude: where: $\overline{\mathbf{g}}$ = strength of gravity field F_g = force of gravity on test object m = mass of test object *Note: this is just Newton's second law revisited.

If we release a test object in a gravity field, it will accelerate in the direction of the field with a force proportional to the mass of the object

ex) If a shark of mass 175 kg experiences a force of 1480 N towards the Earth, what is the strength of the field at the shark?

ex) A test object of mass m experiences a field strength of
g. If the mass doubles and the force acting on the object is
the same, what must happen to the field strength?

Source Object Formula

- When we want to calculate the force of gravity or gravitational field *created* by a source object, we need to use a different formula.
- First, let's look at what factors may affect how big the gravity created from an object will be:

To remove this proportion symbol, we must introduce a constant of proportionality.
g = _Gm *On formula sheet
r ²
g = gravitational field (m/s ²)
G = universal gravitational constant
m = mass of gravity producing object
r = distance between test object and gravity
producing object

The constant G was proposed by Newton and finally calculated some years later through the results of Henry Cavendish's Cavendish experiment (which was used to determine the mass of the Earth).

be:	value of G was calculated from Cavindish's data
	G = 6.67 x 10 ⁻¹¹ Nm ² /kg ²
This	s value is quoted on your formula sheet and <mark>is th</mark>
sam	ne everywhere in the universe!
9	$\widehat{\chi}$ Also remember that this is an exact value and is
1/	~~ not subject to sig-digs.

ex) Calculate the gravitational field strength on the surface
of the Earth.

ex) Calculate the gravitational field strength on the highest
peak of Everest (8848 m above the earth).

ex) Calculate gravitational field strength on the planet LDtopia,
whose mass is 1/8 that of Earth and whose radius is three times
larger.

Newton's Law of Universal Gravitation

Newton not only worked out a formula for field strength: he also combined this formula with his second law to determine the <u>Law of Universal</u>

Gravitation.

e	x) What is the force of gravity between myself and
	ght now?

ex) What is the force of gravity between two neutrons placed
150 pm apart?

1	If the distance between two objects doubles, and the
	ss of the objects stay the same, what can be said of the
for	ce of gravity between them?
ex)	If the distance between two objects halves, and the
ma	ss of one of the objects stay the same while the other
tri	ples, what can be said of the force of gravity between
-	and a second of the force of gravity activeent
the	
the	em?
the	