Acceleration

Acceleration

When you're in a car, do you ever feel like you're moving?

Acceleration

We only feel motion when we speed up or slow down, i.e. when we experience acceleration

Acceleration: a change in velocity over time. \vec{a}, vector quantity.

$$
\vec{a}=\frac{\Delta \vec{v}}{t}
$$

$a \rightarrow$ magnitude.

Accelerated vs Uniform Motion

Uniform Motion: Motion in one direction at constant speed.
Uniform motion is simpler to calculate, but accelerated motion is much more common in real life.

Accelerated Motion: motson at varying speeds.

Accelerated vs Uniform Motion

Examples of accelerated motion:

- A car speeding up or slowing down
- A ball falling downward
- A space shuttle launching
- anything that changes speed

Calculating Acceleration

Acceleration is a change in velocity over a time period. This definition tells us the formula we will use:

$$
\vec{a}=\frac{\Delta \vec{V}}{\Delta t}
$$

Calculating Acceleration
A race car driver accelerates frons rest ito a velocity of $25.0 \mathrm{~m} / \mathrm{s}$
[W], in 4.00s. What is the acceleration of the care

$$
\begin{array}{rlrl}
t=4.00, & \vec{a}=\frac{\Delta \vec{V}}{t} & a=\frac{\Delta \vec{v}}{t} & =\frac{\vec{f}_{f}-\vec{v}_{i}}{t} \\
& \frac{\left(\frac{\pi}{s}\right)}{\mathrm{s}} \\
\Delta \vec{V} & =\text { change in velocity. } & & =\frac{25.0 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{4.00 \mathrm{~s}} \\
\vec{V}_{f} & =25.0 \mathrm{~m} / \mathrm{s}[\mathrm{w}] & & =6.25 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~W}] \\
\vec{V}_{i} & =0 \mathrm{~m} / \mathrm{s} &
\end{array}
$$

Calculating Acceleration

A bus is travelling at $15 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$, and applies its brakes, coming to a stop in 3.0 s , What is the acceleration of the bus?

$$
\begin{aligned}
& \vec{a}=\frac{\Delta \vec{V}}{t}=\frac{\vec{V}_{f}-\vec{V}_{i}}{t}=\frac{0-15}{3.0} \\
& \vec{V}_{i}=15 \mathrm{~m} / \mathrm{s} \mathrm{~N}=-5.0 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}] \\
& \vec{V}_{f}=0 \mathrm{~m} / \mathrm{s}=5.0 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~s}] \\
& t=3.0 \mathrm{~s}
\end{aligned}
$$

Calculating Acceleration

A golf ball rolling on a green slows down from $2.00 \mathrm{~m} / \mathrm{s}$ to 1.50 m / s in 2.00 s . What is the magnitude of the acceleration of the ball?
how much
number.

$$
\begin{array}{ll}
V_{f}=1.50 \mathrm{~m} / \mathrm{s} \\
v_{i}=2.00 \mathrm{~m} / \mathrm{s} \\
t=2.00 \mathrm{~s} & a=\frac{v_{f}-v_{i}}{}=\frac{1.50-2.00}{2.00} \\
t a=-0.25 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

Calculating Acceleration

An ball, initially at rest, is dropped off a building and accelerates to Earth a $-9.81 \mathrm{~m} / \mathrm{s}^{2}$. $81 \mathrm{~m} / \mathrm{s}^{2}$ [downward]). How long will it take the balitoreach a final velocity of $-49.1 \mathrm{~m} / \mathrm{s}$?

$$
\begin{array}{rl}
t \times \vec{a}=\frac{\vec{v}_{f}-\vec{v}_{i}}{t} \times t & t=\frac{\vec{v}_{f}-\vec{v}_{i}}{\vec{a}} \\
\frac{t \times \vec{a}}{\vec{a}^{i}}=\frac{\vec{v}_{f}-\vec{v}_{i}}{\vec{a}} \quad=\frac{(-49.1 \mathrm{~m} / \mathrm{s})-0}{-9.81 \mathrm{~m} / \mathrm{s}^{2}} \\
& =5.01 \mathrm{~s} .
\end{array}
$$

Calculating Acceleration

A cyclist starts at rest and accelerates at $2.50 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$ for 6.00 s . What is the final velocity of the object?

$$
\begin{aligned}
& \vec{V}_{f}=? t \times \frac{\vec{a}^{2}}{}=\frac{\vec{v}_{f}-\vec{v}_{i}}{t} \times t \quad \vec{v}_{f}=6.00 \mathrm{~s} \times 2.50 \mathrm{~m} / \mathrm{s}^{\mathrm{o}}+0 \\
& \begin{aligned}
& t \times \vec{a} \\
&+\vec{v}_{i}=\vec{v}_{f}-\vec{v}_{i} \\
&+\vec{v}_{i}
\end{aligned} \\
& =15.0 \mathrm{~m} / \mathrm{s}[\mathrm{~N}] \\
& t \times a+\vec{v}_{i}=\vec{V}_{f}
\end{aligned}
$$

Positive and Negative Acceleration

Our previous examples had some positive and negative answers. How do we know when acceleration is positive or negative?

Positive and Negative Acceleration

(a) Positive acceleration: both the change in the magnitude and the direction of the velocity are positive.

(c) Negative acceleration: the change in the magnitude of the velocity is negative while the direction is positive.

(b) Positive acceleration: both the change in the magnitude and the direction of the velocity are negative.

(d) Negative acceleration: the change in the magnitude of the velocity is positive but the direction is negative.

Positive and Negative Acceleration

Acceleration From a Graph

$$
\vec{a}=\frac{\overrightarrow{V_{f}}-\vec{V}_{i}}{t}
$$

Calculating Acceleration

Acceleration is the change in velocity over time.

$$
\begin{aligned}
&=0.1 \mathrm{~m} / \mathrm{s}^{2} \\
& \begin{aligned}
\vec{a} & =\text { slope } \\
& =\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \\
& =\frac{2-10}{40-0} \\
& =\frac{-8}{40} \\
& =-0.2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\end{aligned}
$$

Acceleration Graphs

What does acceleration look like on different types of graphs?

A bull starts from rest, and charges. It reaches a velocity of $4.5 \mathrm{~m} / \mathrm{s}[E]$ after 3.0 s . What was its average acceleration?

$$
\begin{array}{ll}
\vec{V}_{i}=0 & \vec{a}=\frac{\vec{v}_{f}-\vec{v}_{i}}{t} \\
\vec{V}_{f}=4.5 \mathrm{~m} / \mathrm{s}[E] & \\
t=3.0 \mathrm{~s} & \frac{4.5-0}{3} \\
& \\
& =1.5 \mathrm{~m} / \mathrm{s}^{2}[E]
\end{array}
$$

