Acceleration

Acceleration

When you're in a car, do you ever feel like you're moving?

Acceleration

We only feel motion when we speed up or slow down, i.e. when we experience acceleration

Acceleration: a change in velocity over time.

$$\vec{a}$$
, vector quantity.
 $\vec{a} = \vec{a} \cdot \vec{b}$ $\vec{a} = magnitude$.

Accelerated vs Uniform Motion

Uniform Motion: motion in one direction at constant speed.

Uniform motion is simpler to calculate, but accelerated motion is much more common in real life.

Accelerated Motion: motion at varying speeds.

Accelerated vs Uniform Motion

Λ

Examples of accelerated motion:

- A car speeding up or slowing down
- A ball falling downward
- A space shuttle launching

Acceleration is a change in velocity over a time period. This definition tells us the formula we will use:

A race car driver accelerates from rest to a velocity of 25.0 m/s
[W], in 4.00s. What is the acceleration of the car3

$$t=4.00s$$
 $\overrightarrow{A} = \frac{\overrightarrow{AV}}{t}$ $a = \frac{\overrightarrow{AV}}{t} = \frac{\overrightarrow{V_{e} - V_{i}}}{t}$ $\frac{(m)}{5}$
 $\overrightarrow{AV} = change invelocity.$ $= \frac{25.0m/s - 0^{m/s}}{4.00s}$
 $\overrightarrow{V_{e}} = 25.0m/s$ [W]
 $\overrightarrow{V_{i}} = 0^{m/s}$ $= 6.25 M/s^{2}$ [W]

A bus is travelling at 15 m/s [N], and applies its brakes, coming to a stop in 3.0s. What is the acceleration of the bus?

$$\vec{d} = \frac{AV}{t} = \frac{V_{f} - V_{i}}{t} = \frac{0 - 15}{3.0}$$

$$\vec{V}_{i} = 15 \text{ m/s N} = -5.0 \text{ m/s}^{2} [N]$$

$$\vec{V}_{f} = 0 \text{ m/s} = 5.0 \text{ m/s}^{2} [S]$$

$$\vec{t} = 3.0 \text{ s}$$

A golf ball rolling on a green slows down from 2.00 m/s to 1.50 m/s in 2.00s. What is the magnitude of the acceleration of the ball? how much

$$V_{q} = 1.50^{m/5} \qquad a = V_{q} - V_{1} = \frac{1.50 - 2.00}{2.00}$$

$$V_{i} = 2.00^{m/5} \qquad \frac{b}{a} = -0.25^{m/5}$$

$$t = 2.00^{s}$$

An ball, initially at rest, is dropped off a building and accelerates to Earth at -9.81 m/s². (9.81 m/s² [downward]). How long will it take the ball to reach a final velocity of -49.1 m/s?

A cyclist starts at rest and accelerates at 2.50 m/s² [N] for 6.00 s. What is the final velocity of the object? $V_{g} = ? + x \vec{a} = V_{g} - V_{c}$ $V_{g} = 6.00 \text{ s} \times 2.50^{\text{m/s}^{2}} + 0$ = 15.0 M/s[N] $t \times \vec{a} = \vec{V}_{q} - \vec{V}_{i}$ $t \times a + \vec{V}_i = \vec{V}_c$

Positive and Negative Acceleration

Our previous examples had some positive and negative answers. How do we know when acceleration is positive or negative?

Positive and Negative Acceleration

Positive and Negative Acceleration

Acceleration From a Graph

Acceleration is the change in velocity over time.

 $= -\frac{8}{40}$ = -0.2^M/s²

Acceleration Graphs

What does acceleration look like on different types of graphs?

