Measuring Distance

Kinematics

The study of motion.

If I drive to Calgary, how can I figure out how far I went?

$$N300$$
 Km

Distance

If I turn around and come back to St. Albert, how far have I gone? What will the odometer in the car say?

Distance

Circumberenco

If I drive around a circular track with a diameter of 1 km, how far have I travelled?

Distance

After completing a lap on the circular track, how far am I from where I started?

Distance vs. Displacement

Displacement The length from a starting point. home > Calgary > home OKM. requires a direction.

Distance vs. Displacement

Kinematics and Dynamics $\Delta d_{Tot} = d_1 + d_2 + \dots$ $\Delta = detta$ "change" $\Delta \vec{d} = \vec{d}_1 + \vec{d}_2 + \dots$

Distance vs. Displacement

Discussion: Can distance ever be negative?

How do I know how fast I went on my trip to Calgary? distance travelled fime it took

$$d = 300 \text{ Km}$$

$$time = t = 3 \text{ hr.}$$

$$\frac{d}{t} = \frac{300 \text{ Km}}{3 \text{ hr.}} = 100 \text{ Km/hr.}$$

Speed: distance travelled over a
time period.
$$V = \frac{d}{t}$$

600 km in 11.0 hr. what was my average speed?

$$d = 600 \text{ km}$$

 $t = 11.0 \text{ h}$ $V = \frac{d}{t} = \frac{600 \text{ km}}{11.0 \text{ h}} = 54.5 \text{ km}$

400m in
$$65s$$
. What was my average
speed?
 $d=400m$ $N=\frac{d}{4}=\frac{400m}{65s}=6.2 m/s$
 $t=65s$ $N=\frac{d}{4}=\frac{400m}{65s}=6.2 m/s$

3 m/s for 260s. what was my
distance travelled.

$$t \times N = \frac{d}{d} \times t$$

 $n' \times t = d = 3m/s \times 260s = 780m$
 $n = 3m/s$
 $t = 260s$
I would 600m. I ran at 4.5 m/s. How long
did it take me?
 $N = 4.5m/s$ $t \times N = \frac{d}{d} \times t$
 $d = 600m$
 $t = ?$
 $t \times N = \frac{d}{N} = \frac{600m}{4.5m/s}$
 $= 133s$
 $= 1.3 \times 10^{3}s$

Graphing Distance

What type of motion does each graph show?

Is the object still, moving at a constant speed, getting faster, or getting slower?

Uniform Motion

Uniform Motion is:

In Science 10, we will deal with motion in straight lines, both uniform and accelerated. In Physics 20, you will see curved motion and changes in direction!