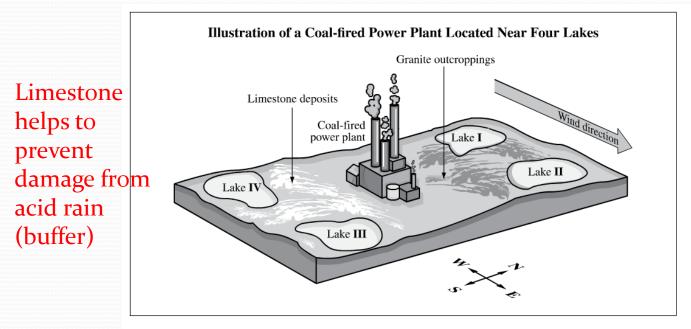

Sample Diploma Problem

Use the following information to answer question 17.

To prevent the growth of mould and bacteria, winemakers use sulfur dioxide, $SO_2(g)$, when making wine.

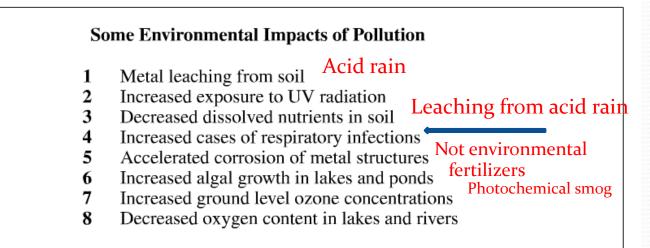

- 17. Sulfur dioxide in an aqueous solution can react to form
 - A. SO(aq)
 - **B.** CS₂(aq)
 - C. $H_2S(aq)$ SO₂ + H₂O \rightarrow H₂SO₃
 - **D.** $H_2SO_3(aq)$

acid

10. Acid deposition has been most directly linked to

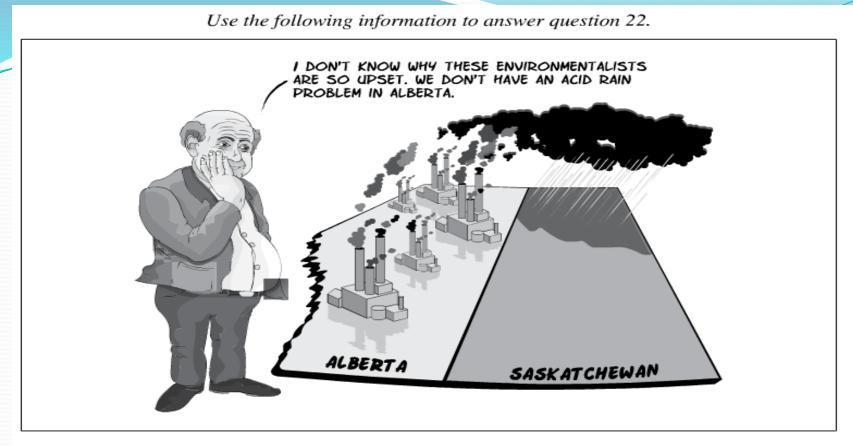
- A. metal leaching
- B. global warming
- C. genetic mutations
- D. increased UV radiation

12. Which of the lakes above would be **most affected** by emissions from the coal-fired power plant?



ii: wind is going that direction
and bc westerly winds(prevailing
winds)

19. Which of the following rows describes a property of ozone, $O_3(g)$, in the upper atmosphere and a property of ozone at ground level?


Row	Ozone in the Upper Atmosphere	Ozone at Ground Level
(A.)	Absorbs ultraviolet (UV) radiation	Contributes to photochemical smog
В.	Absorbs ultraviolet (UV) radiation	Biomagnifies in predators
C.	Contributes to acid deposition	Contributes to photochemical smog
D.	Contributes to acid deposition	Biomagnifies in predators

Use the following information to answer question 20.


20. The environmental impacts that are most directly linked to photochemical smog are

A.	1 and 5
В.	2 and 8
C.	3 and 6
D.)	4 and 7

- 22. The main point of the cartoon is that
 - A. emissions from industries in Alberta do not result in significant acid deposition
 - **B.** Saskatchewan is more environmentally friendly than Alberta because it does not rely on fossil fuels
 - C. fossil-fuel-based industries affect the environment more in Alberta than in Saskatchewan

prevailing winds carry acid-forming emissions away from Alberta and affect the environment elsewhere

11. One major environmental concern related to the burning of coal is the emission of

- A. ozone, $O_3(g)$
- **B.** sulfur dioxide, $SO_2(g)$
- C. chlorofluorocarbons, CFCs
- **D.** dichlorodiphenyltrichloroethane, DDT

Sample Diploma Problem

- A major concern associated with the release of CO₂(g) into the atmosphere is that it contributes directly to
 - A. acid deposition
 - **B.** global warming
 - C. ozone depletion
 - D. biomagnification

Indicators

ECONOMIC INDICATORS

When the hamster has more money than you, you know times are bad

Curriculum

- trace the historical use of acid-base indicators;
- use a pH meter and/or pH paper and indicators to measure the pH of solutions;
- use indicators and a conductivity meter to differentiate between a strong acid and a weak acid

Measuring pH

- For centuries people have known that substances change color depending whether they are in acidic or basic conditions
- Dyers or painters used this property to their advantage by adding an acid or a base to a dye or pigment to achieve a different color

Indicators

- Scientists use indicators to tell if a substance is an acid or a base
- An **acid-base indicator** is something that changes color in an acidic or basic solution
- Once chemists found how to measure the exact concentration of hydronium ions, they could link the color change to a specific pH

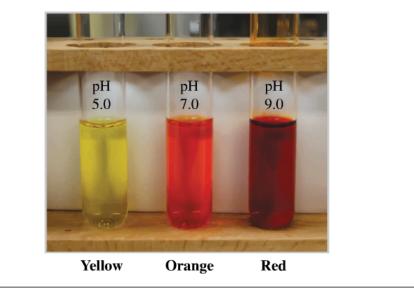
Data Booklet

Acid–Base Indicators at 25°C

Indicator	Abbreviation (acid/conjugate base)	pH Range	Colour Change as pH Increases
methyl violet	HMv(aq) / Mv ⁻ (aq)	0.0 - 1.6	yellow to blue
thymol blue	H ₂ Tb(aq) / HTb ⁻ (aq)	1.2 - 2.8	red to yellow
thymol blue	HTb ⁻ (aq) / Tb ²⁻ (aq)	8.0 - 9.6	yellow to blue
orange IV	HOr(aq) / Or ⁻ (aq)	1.4 - 2.8	red to yellow
methyl orange	HMo(aq) / Mo ⁻ (aq)	3.2 - 4.4	red to yellow
bromocresol green	HBg(aq) / Bg ⁻ (aq)	3.8 - 5.4	yellow to blue
litmus	HLt(aq) / Lt ⁻ (aq)	4.5 - 8.3	red to blue
methyl red	HMr(aq) / Mr ⁻ (aq)	4.8 - 6.0	red to yellow
chlorophenol red	HCh(aq) / Ch ⁻ (aq)	5.2 - 6.8	yellow to red
bromothymol blue	HBb(aq) / Bb ⁻ (aq)	6.0 – 7.6	yellow to blue
phenol red	HPr(aq) / Pr ⁻ (aq)	6.6 - 8.0	yellow to red
phenolphthalein	HPh(aq) / Ph ⁻ (aq)	8.2 - 10.0	colourless to pink
thymolphthalein	HTh(aq) / Th ⁻ (aq)	9.4 - 10.6	colourless to blue
alizarin yellow R	HAy(aq) / Ay ⁻ (aq)	10.1 – 12.0	yellow to red
indigo carmine	HIc(aq) / Ic ⁻ (aq)	11.4 – 13.0	blue to yellow
1,3,5-trinitrobenzene	HNb(aq) / Nb ⁻ (aq)	12.0 - 14.0	colourless to orange

Acid-Base Indicators

- Indicators can be solutions or soaked on paper and dried
- When a variety of different acid and base indicators are added together you get a **universal indicator**


Natural Indicators

• Tea, grape juice, the juice of a red cabbage, and blueberries will all change color in the presence of acids or bases

chlorophenol red	HCh(aq) / Ch ⁻ (aq)	5.2 - 6.8	yellow to red	
bromothymol blue	HBb(aq) / Bb ⁻ (aq)	6.0 - 7.6	yellow to blue	
phenol red	HPr(aq) / Pr ⁻ (aq)	6.6 - 8.0	yellow to red	
phenolphthalein	HPh(aq) / Ph ⁻ (aq)	8.2 - 10.0	colourless to pink	
thymolphthalein	HTh(aq) / Th ⁻ (aq)	9.4 - 10.6	colourless to blue	
alizarin yellow R	HAy(aq) / Ay ⁻ (aq)	10.1 – 12.0	yellow to red	
	Use the following information	to answer question 3.		

The same acid–base indicator is added to three different test tubes containing solutions with pH 5.0, pH 7.0, and pH 9.0. A photograph of the resulting indicator colours is shown below.

- **3.** Which of the following indicators was added to the three test tubes shown in the photograph above?
 - A. Alizarin yellow R
 - **B.** Methyl orange
 - Phenol red
 - D. Orange IV

C.

Use the following information to answer numerical-response question 1.

A different acid–base indicator is added to each of four different samples of a solution with a pH of 8.73.

Possible Colours of Resulting Solutions

1 2 3	Red Pink Blue	Thymol blue there are two of them. When its
4 5	Green Yellow Orange	in the middle of yellow and blue it turns green.

Numerical Response

1. Match the colours of the resulting solutions numbered above with each of the indicators listed below. (You may use a number more than once.)

Colour:	Blue (3)	red (1)	green (4)	red (1)
Indicator:	Bromothymol blue	Chlorophenol red	Thymol blue	Phenol red


(Record all four digits of your answer in the response boxes at the bottom of the screen.)

Use the following information to answer question 8.

The juice from boiled red cabbage leaves turns different colours when placed in solutions with different pH values.

8. Based on the information above, red cabbage juice can be used as

- A. a buffer solution
- **B.** a scrubber solution
- **C.** an acid–base indicator
- D. an indicator of biomagnification

