Physics 20 Unit 4 - Oscillatory Motion and Mechanical

Waves

Oscillatory Motion
and
Simple Harmonic Motion




Oscillatory Motion

- A repetitive back and forth motion
- wings flapping
- strings vibrating
- electrical current (AC)
- other examples?

- one complete oscillation is called a cycle



Period and Frequency

Recall the term period from UCM:

Period: The amount of time it takes to complete one
revolution (in unit 3, a circle).

Oscillatory Motion is similar to UCM in that it shares this
term:

Period: the amount of time it takes to complete one
cycle (in this case, one back and forth movement).



The period of many types of oscillatory motion is
very small :

For this reason, it is often helpful to think in terms of
oscillations or cycles per second. This is the called

frequency.

Object
Bumblebee wings
Hummingbird Wings
Middle C on a piano
AC Current

Period

0.005 s
0.0128 s
0.004 s
0.0167 s




Frequency

- the number of cycles per second of oscillatory motion

where:

f = frequency in hertz (Hz) or cycles/second or s-1
T = period (seconds)



ex) The wings of a Canada Goose flap 200
times per minute.

a) What is the frequency of the flap?

b) What is the period of the flap?



An object which oscillates needs a force to keep it
moving. Sometimes that force is supplied from
outside the system (such as the muscles of a bird).
Other times, that force comes from within a system.

The force which keeps the oscillations going is
called a restoring force.

Any oscillatory system which has a restoring force
acting against the displacement to keep an object
moving is called a simple harmonic oscillator and is
said to exhibit simple harmonic motion.




One example of a simple harmonic oscillator is a mass
attached to an ideal horizontal spring sliding along a
frictionless surface.

In this situation, the spring provides the restoring
force to keep the mass moving back and forth.
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Hooke's Law and Elastic Energy

In 1676, Robert Hooke devised a
relationship between the amount of
stretch in a spring and the weight
suspended by that spring.
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When a graph of
weight vs. stretch
was made, a linear
relationship is
established.

Weight (N)

Stretch (m)

This graph is a linear function of y-int = 0.




Note:

Hooke's Law appears with a negative sign in front of the
spring constant on your formula sheet:
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because the force applied by a spring is always in the
opposite direction of the displacement.



Hooke's discovery leads us to a way to calculate the
potential energy stored in a spring or any elastic device:

We can not derive an equation from our usual starting
statement of W = Fd because the force acting on a spring
over several different masses is not constant.

We can, however, determine the work (and therefore

energy) by finding the area under our weight vs. stretch
graph.




To calculate the area under this
graph, we use:

A=1/2 bh

E = 1/2Fx

::::::l our force can be described by Hooke's Law, we can
E = 1/2Fx

E = 1/2(kX)x

Force [N}

position (m)

E, = 1/2kx2

elastic potential energy

Where:

E; = Potential Energy (J)
k = Spring Constant (N/m)
¥ = Displacement of Spring (m)




ex) The following graph shows how a force causes change
in position as it stretches a spring.

Note that the force is acting parallel to the change in
position.

(a) Calculate the energy stored in the spring when the force
is 46.0 N.

(b) Compare the energy when the force is 46.0 N to the
energy stored in the spring when
its position is 7.00 cm.

Force vs. Position for a Sireiched Spring

T

Force F (M)
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We can take a closer look at what is happening to this
mass over different positions of its movement.

The spring is stretched by a
distance of +Xx.

I.IH I'Iﬁ‘."..ltl'l.u"f!'

- mass is pulled back as far as it can go (it will return to
this initial distance each cycle)

- the max. amount of stretch is called the spring's
amplitude

- the amount of force in the spring is directly proportional
to the amplitude

- when released, the restoring force of the spring will
cause mass to accelerate and move towards its starting
(equilibrium) position




The mass is at its
maximum velocity at its
equilibrium point.

- the spring is at the in-between moment: it is no longer
stretched and has yet to be compressed

- no stretch in spring = no force and no acceleration

- the mass will continue to move left, slowing down as it
compresses the spring



4™ +max 3 The spring is fully compressed, the

mass changes direction.

-
X IS negative |
I

- the amount the spring is compressed is the same as the
amount it was stretched by (the amplitude), but a negative
value

- the restoring force in the spring is at maximum again, and
the block will begin to accelerate right
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The block continues to
move right, at max.
velocity.

The block stretches the
spring to max.
amplitude and turns
around: the cycle
repeats.



This system has now made one
complete oscillation.

At any point during the oscillation,
the mass-spring system obeys
Hooke's Law (F = kx)

Notice the shape the
movement of the mass
makes.



Now let's examine the same mass-spring system aligned
vertically:
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In (a), we have a spring with no
mass attached.
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In (b), the mass is attached and

- stretches the spring. If the mass
comes to rest, the force of gravity
will be balanced by the restorative

£ force of the spring.

equilibrium -
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At this equilibrium point:

Fg - Fspring




Let's say we push the mass up, compressing the spring a
bit.

B e - the mass starts at rest
X - the force of gravity pulls down on
f :li{\ the mass
h v Fou - the force of the spring pulls up a
e ~ S — small amount on the mass
:: e - the overall net force is acting

) downward, so the mass will start to
5 l Fy accelerate downwards



Later, the mass will reach equilibrium:

{b)
= - velocity is at its maximum

- force of gravity = force of spring
- note: force of gravity does not
change during the experiment!




The mass will then travel past equilibrium...

(c)
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- mass comes to a stop: velocity is
zero

- maximum restoring force from spring
- mass will begin to accelerate
upwards

- notice: force of gravity is the same
throughout the experiment!



...before returning back to equilibrium and repeating the

rocess.
P (d)

v t max

- mass at
equilibrium

ngt

- mass back to
starting position



Note the pattern the mass makes as a function of time:

(a) (b} (c) (d)




Understanding the conditions present in each of these
situations can be helpful when solving problems involving
springs and SHM.

ex) Two springs are hooked together and one end is
attached to a ceiling. Spring A has a k = 25 N/m and
spring B has a k = 60 N/m. A mass weighing 40.0 N is
attached to the free end of the spring system. What is
the total displacement of the mass?
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Ans: -2.3 m



All objects undergoing SHM follow these rules:

- there is a restoring force acting in the opposite
direction of the displacement (a force acting opposite of
the movement to pull the object back and keep it
oscillating)

- at the maximum displacements, the restoring force is
at its maximum. This displacement is called the
oscillator's amplitude. The velocity at this point is zero.

- at equilibrium, the restoring force is zero and the
velocity of the object is maximum.




Other examples of SHM:

- musical instruments
- bungee jumping
- pendulums

An ideal pendulum is a good example of
SHM.

Ideal pendulums:

- swing through a small angle

- have no friction

- have their entire mass concentrated at
the bob




The restoring force in a pendulum is a component of
the force of gravity acting opposite the displacement
of the bob. All simple harmonic oscillators must have a
restoring force.

The bob is pulled from equilibrium and
released.
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(a) g  left = = nght +

- the velocity before it begins to
move is zero

- the restoring force is at its
maximum

- the restoring force can be found
using the equation:

—
- where 8 is the angle

F R = FgSi n e the bob is pulled back
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equilibrium.
R gy - the velocity of the bob is at its
< " max maximum
fa [f' - the restoring force is zero (note

the equation verifies this:

Fr = Fysin(0) = 0



= right +

The pendulum then
reaches it's other
maximum displacement.

- the angle 0 is the same as the
angle the bob was released at

- the restoring force is the same as
the original force, only in the
opposite direction

This process continues indefinitely (so long as energy
is conserved).
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