P20 - Unit 2 - Forces

The Net Force in Elevator Problems and Pulleys

Question: What is an elevator?

An <u>elevator</u> is a device used for moving people from one story of a very large building to another story.

You might see one if you ever go to the city (cross your fingers, if you're lucky!!!)

Review:

Why are amusement park rides exciting?

Review: Bathroom Scales

Would a bathroom scale work in space?

The thing about

Have you ever noticed...

- when the elevator is at rest...
- when the elevator is starting upwards...

- in the middle of the ride...

Elevators work on the concept of the applied and total forces. It also brings to mind a new* force...tension.

Tension: a force applied by a rope, string, cable, etc. We assume the rope has no mass, no friction and does not stretch.

We will consider 4 scenarios:

- 1. Elevator at rest.
- 2. Elevator starts up.
- 3. Elevator starts down.
- 4. Elevator at constant velocity.

*This is really nothing new. Just a regular force with a new name.

4. Constant velocity.

This is also the case for when the elevator is moving with a cosntant velocity, as both cases represent

2. Elevator starting up.

Ì ₽_₽

Since the elevator is going up, the tension must be greater than the force of gravity. The total force will be pointing upwards.

So,
$$\vec{F}_T > \vec{F}_g$$

 $\vec{F}_{tot} = \vec{F}_T + \vec{F}_g$ $\vec{F}_{tot} = +ive$

By Newton's ____ Law, if there is an upwards force, there is an acceleration.

3. Elevator starting down.

F_g

Since the elevator is going down, the tension must be less than the force of gravity. The total force will be pointing downwards.

So,
$$\vec{F}_T < \vec{F}_g$$

 $\vec{F}_{tot} = \vec{F}_T + \vec{F}_g$ $\vec{F}_{tot} = -ive$

By Newton's ____ Law, if there is a downwards force, there is an acceleration.

ex) (pg 151) A person and an elevator have a combined mass of 6.00×10^2 kg. The cable exerts a tension of 6.50×10^3 N up on the elevator. What is the acceleration on the person?

Many practical problems involve the use of one or more pulley. Here's a few pieces of info about pulleys:

- we assume the pulley system has no friction.
- the pulley only changes
 the direction of the force!

Atwood's Pulley

lf m₁ = 0.250 kg m₂ = 0.100 kg What is the acceleration of the <u>system</u>?

*What are the forces acting on the pulley?

*Hint = the pulley only changes the direction of force. If you straighten out the diagram, it would look like this:

$$\vec{F}_{tot} = \vec{F}_{g1} + \vec{F}_{g2}$$

Key Tip: when finding the acceleration of the <u>system</u>, you must use the mass of the <u>system</u>!

ex) Find the tension in the rope in the previous problem.

$$\vec{F}_{tot} = \vec{F}_T + \vec{F}_g$$

*Now consider only one mass (it doesn't matter which one). Draw a free-body diagram.

*For the total force, use the acceleration of the system.

*For the mass, use the mass of the single pulley.

*Mind your integers!

Calculating Tension

- Forces affecting m_1 : $m_1 a = T m_1 g$
- Forces affecting m_2 : $m_2 a = m_2 g T$
- and adding the two previous equations we obtain

 $m_1a + m_1g = m_2g - m_2a$

• and our concluding formula for acceleration

$$a = \frac{g(m_2 - m_1)}{m_1 + m_2}$$

Tension Continued

• Solving for a in the previous formulas, then equating the two formulas (thus getting rid of a), and solving for T we get:

$$T = \frac{2gm_1m_2}{m_1 + m_2}$$

Two Pulley Systems

- the same as before, now with double the pulleys for double the fun!!!

A box of mass 15 kg is on a horizontal frictionless table. Attached via pulleys are two masses, one 7.0 kg and one 9.0 kg. What is the acceleration of the system?