

Force and Work

A. Force B. Work

The forces on the person arebalanced.

The ram of a pile-driver possesses mechanical energy - the
ability to do work. When held at a height, it possesses mechanical energy in the form of potential energy. As it falls it possesses mechanical energy in the form of kinetic energy.

As it strikes the spike, it applies a force to displace the

spike - i.e., it does work on the spike.

- Whenever an object accelerates there has to have been a force applied to the object that changed its velocity
- The only way in which an object speeds up or slows down is if there is a push or pull. The amount that the object accelerates depends upon two things; its mass and the force applied to the object.
- What would happen if the same object is pushed with two different forces?
- Example: Suppose that you push a stopped tennis ball with a little push and then with a big push. Which time will the ball have a greater acceleration?
- We can say that there is a direct relationship between force and acceleration, the greater the force, the greater the acceleration
- What would happen if the same force (amount of push) were applied to two objects having different masses?
- Example: Suppose that you push a bowling ball and a tennis ball with the same force. Which object would have a greater acceleration?
- We can see that there is an inverse relationship between the mass and acceleration. The greater the mass is for a certain force, the smaller will be its acceleration
- Formula $F_{\text {net }}=m a$
where

$$
\begin{aligned}
& F_{\text {net }}=>\text { force }(N, \text { Newtons }) 1 \text { Newton }=1 \mathrm{~kg}^{*} \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& m=>\text { mass }(\mathrm{kg}) \\
& a=>\text { acceleration }\left(\mathrm{m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

- The unit of force, Newton, was named after the physicist Sir Isaac Newton.

Weight

- A measure of the force of gravity acting on an object.
- The direction of the force (weight) acts in the same direction as the acceleration (\mathbf{g}), downwards towards the centre of the earth.
- Newton's second law is sometimes written as:

$\mathbf{F g}=\mathbf{m g}$

Where:
$\vec{F}_{g}=$ weight (N)
$\mathbf{m}=$ mass ($\mathbf{k g}$)
$\vec{g}=-9.81 \mathrm{~m} / \mathrm{s}^{2}$

Example 1: A person pushes a 10 kg box and a $1.50 \mathrm{~m} / \mathrm{s}^{2}$ acceleration is noticed. What was the net force that was applied to the box?

Example 2: A 2000 kg car is decelerating at a rate of 2.3 $\mathrm{m} / \mathbf{s}^{2}$. What net force was required in order to slow the car down?

Example 3: What is the mass of a rock that hits the ground with a force of 150N?
(NOTE: the acceleration due to gravity- g - is equal to $9.81 \mathrm{~m} / \mathrm{s}^{2}$)

Example 4: A small airplane with a mass of 1600 kg touches down on a runway with a speed of $25 \mathrm{~m} / \mathrm{s}$. It slows to a stop in 18s. Calculate the force required to stop the airplane (hint- you have to use 2 different formulas)

B. Work and Energy

- Work is defined as a measure of the amount of energy transferred from one object to another
- In order to do work a force must be applied over a certain distance.
- In order for work to take place, the following conditions must be fulfilled:
i. There must be movement
ii. A force is applied to the object
iii. The force and the distance the object travels must be in the same direction (If the $F_{\text {app }}$ and displacement are perpendicular, then the work is equal to zero)
- Example: moving a suitcase - Is work being done?

The relationship between work and energy:

- Energy is defined as the ability to do work.
- If an object has energy, it can do work by transferring the energy to another object (as one object loses energy, the other gains the same amount of energy)
- Therefore the change in energy = work, and therefore the units for energy is also Joules (J)

Calculating work:

- The formula for calculating work is:

Work = Force X distance
W = F•d
$=$ Newton metres $(\mathrm{N} \cdot \mathrm{m}) \quad$ Note: $\mathrm{N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
$=$ Joules (J)
Therefore, $1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$

Examples:

1. Jonny pushes a box with a force of 200 N for a distance of 15.0 m . How much work did he do?
2. A log is pulled and 150 J of work is done as it moves 20.0 cm . What was the applied force?
3. A truck with a mass of 11700 kg is traveling at $41 \mathrm{~m} / \mathrm{s}$. Suddenly, the driver slams on the brakes. The truck takes 5.00 s and 52 m to stop. Calculate the work done on the truck by the brakes (hint: you have to use 2 different formulas!)
